Jody Radzik
EF2
Please correct me if I'm wrong, but I believe this to be a low top supercell snow squall that formed over the Truchas Mountains in the Sangre de Christo range of the Southern Rockies, 40 miles north of Santa Fe, NM.


After witnessing the continued decrease of involvement in the SpotterNetwork staff in serving SN members with troubleshooting issues recently, I have unilaterally decided to terminate the relationship between SpotterNetwork's support and Stormtrack. I have witnessed multiple users unable to receive support weeks after initiating help threads on the forum. I find this lack of response from SpotterNetwork officials disappointing and a failure to hold up their end of the agreement that was made years ago, before I took over management of this site. In my opinion, having Stormtrack users sit and wait for so long to receive help on SpotterNetwork issues on the Stormtrack forums reflects poorly not only on SpotterNetwork, but on Stormtrack and (by association) me as well. Since the issue has not been satisfactorily addressed, I no longer wish for the Stormtrack forum to be associated with SpotterNetwork.
I apologize to those who continue to have issues with the service and continue to see their issues left unaddressed. Please understand that the connection between ST and SN was put in place long before I had any say over it. But now that I am the "captain of this ship," it is within my right (nay, duty) to make adjustments as I see necessary. Ending this relationship is such an adjustment.
For those who continue to need help, I recommend navigating a web browswer to SpotterNetwork's About page, and seeking the individuals listed on that page for all further inquiries about SpotterNetwork.
From this moment forward, the SpotterNetwork sub-forum has been hidden/deleted and there will be no assurance that any SpotterNetwork issues brought up in any of Stormtrack's other sub-forums will be addressed. Do not rely on Stormtrack for help with SpotterNetwork issues.
Sincerely, Jeff D.
supercell—An often dangerous convective storm that consists primarily of a single, quasi-steady rotating updraft, which persists for a period of time much longer than it takes an air parcel to rise from the base of the updraft to its summit (often much longer than 10–20 min).
Most rotating updrafts are characterized by cyclonic vorticity (see mesocyclone). The supercell typically has a very organized internal structure that enables it to propagate continuously. It may exist for several hours and usually forms in an environment with strong vertical wind shear. Supercells often propagate in a direction and with a speed other than indicated by the mean wind in the environment. Such storms sometimes evolve through a splitting process, which produces a cyclonic, right-moving (with respect to the mean wind), and anticyclonic, left-moving, pair of supercells. Severe weather often accompanies supercells, which are capable of producing high winds, large hail, and strong, long-lived tornadoes. See also convective storm, thunderstorm, splitting convective storm, cell, bulk Richardson number.
2. Jody, do you mean that the time was 0037Z March 1 (i.e. 5:37 MST Sunday, Feb 28)? Looking at the radar archive, it doesn't seem to show much snow shower activity near Truchas - seems to be a bit farther southeast at that time. Could the photo have been taken earlier than that?
I suppose theoretically it is "possible" to get a supercell that precipitates only snow, but it would very VERY unlikely. You'd have to have temperatures aloft to be cold enough to get enough CAPE to get a strong enough updraft to generate such a storm. The Albequerque, NM sounding from 00z 1 March shows only 145 J/kg of SBCAPE, but less than 20 kts of 0-6 km shear and less than 20 m2/s2 of SRH. I doubt such instability and shear could create a supercell. Not to mention, the freezing level was 3300 ft AGL, so any actual snow falling from under the cloud base would certainly have melted into rain or evaporated completely by the time it reached the ground. So technically, that wouldn't even be a snow-producing supercell.
That said, other than the rotation, I was assuming that a snow squall could in fact be a low top supercell.